Better Than Nuclear

To reduce the emissions fueling climate change and develop more efficient ways of generating energy, while focusing on the bottom line, governments and private institutions all over the world have been turning to renewable energy. And while solar and wind energy advance and become more widely accepted, scientists continue to explore the possibility of stabilizing nuclear fusion as a truly renewable energy source that far outperforms current options.

But what if there's an even better source of energy that's also potentially less volatile than nuclear fusion? This possibility is what researchers from Tel Aviv University and the University of Chicago proposed in a new study published in the journal Nature.

This new source of energy, according to researchers Marek Karliner and Jonathan Rosner, comes from the fusion of subatomic particles known as quarks. These particles are usually produced as a result of colliding atoms that move at high speeds within the Large Hadron Collider (LHC), where these component parts split from their parent atoms. It doesn't stop there, however, as these disassociated quarks also tend to collide with one another and fuse into particles called baryons.

It is this fusion of quarks that Karliner and Rosner focused on, as they found that this fusion is capable of producing energy even greater than what's produced in hydrogen fusion. In particular, they studied how fused quarks configure into what's called a doubly-charmed baryon. Fusing quarks require 130 MeV to become doubly-charmed baryons, which, in turn, releases energy that's 12 MeV more energy. Turning their calculations to heavier bottom quarks, which need 230 MeV to fuse, they found that a resulting baryon could produce approximately 138 MeV of net energy—about eight times more than what hydrogen fusion releases.

Quark fusion could prove to be an essential part of producing energy. Image Credit: Nature (2017). DOI: 10.1038/nature24289

Less Nuclear Than Nuclear

Karliner and Rosner were initially hesitant to publish their findings, partly because they were surprised by them but mostly because hydrogen fusion is what powers hydrogen bombs. However, their fears that this quark fusion could be weaponized soon fizzled out as they realized in subsequent experiments that quarks exist only for about one picosecond. That's too short a time to create a chain reaction to set off more baryons, as the quarks quickly decay into less volatile, lighter quarks.

However, it's this property that also makes this "quark fusion" still largely theoretical. "We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself," the researchers wrote in their paper's abstract. "At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions."

While the team is yet to fuse bottom quarks, which they argue is technically possible using the LHC, their study presents another potentially renewable source of energy—one that could be more powerful than any that's currently available. With the theory largely proven, it is now only a matter of developing the technology that could turn quark fusion into a reality.


Share This Article